

Erratum: Pseudoscalar pole terms in the hadronic light-by-light scattering contribution to muon $g-2$ [Phys. Rev. D **57, 465 (1998)]**

M. Hayakawa and T. Kinoshita
(Published 30 July 2002)

DOI: 10.1103/PhysRevD.66.019902

PACS number(s): 13.40.Em, 12.39.Fe, 12.40.Vv, 14.60.Ef, 99.10.+g

We found that the sign of the pseudoscalar meson pole contribution to the muon $g-2$ given in Eq. (5.1) was incorrect. It must be replaced by a positive quantity

$$a_\mu(\pi^0 + \eta + \eta') = 82.7 \text{ (6.4)} \times 10^{-11}, \quad (1)$$

in agreement with the recent result obtained in Ref. [1]. Similarly, the axial-vector meson pole contribution in Eq. (1.9) must be replaced by

$$a_\mu(\text{axial-vector}) = 1.74 \times 10^{-11}. \quad (2)$$

The error originated from our unfortunate and unjustified assumption that the four-index quantity $\epsilon^{\mu_1\mu_2\mu_3\mu_4}$ transforms as a Lorentz-tensor in evaluating traces of γ matrices by an algebraic program FORM. Other contributions, (a) charged pion-loop contribution and (c) quark-loop contribution shown in Fig. 1, are not affected by this problem. Using the values of Eqs. (1) and (2) and those of (a) and (c) quoted in Eq. (1.8),

$$\begin{aligned} a_\mu(a) &= -4.5 \text{ (8.1)} \times 10^{-11}, \\ a_\mu(c) &= 9.7 \text{ (11.1)} \times 10^{-11}, \end{aligned} \quad (3)$$

our best estimate for the hadronic light-by-light scattering contribution to the muon $g-2$ becomes

$$a_\mu(\text{had. LL}) = 89.6 \text{ (15.4)} \times 10^{-11}. \quad (4)$$

A more detailed discussion is given in Ref. [2].

[1] M. Knecht and A. Nyffeler, Phys. Rev. D **65**, 073034 (2002). [2] M. Hayakawa and T. Kinoshita, hep-ph/0112102.